Stabilization of Unusual Electronic Configurations of Transition Elements in Elongated Six-Coordinated Oxygen Sites of a K₂NiF₄ Structure* #### GÉRARD DEMAZEAU, BERNARD BUFFAT, MICHEL POUCHARD, AND PAUL HAGENMULLER Laboratoire de Chimie du Solide du CNRS, 351, cours de la Libération, 33405 Talence Cedex, France Received December 30, 1983 The A'_xA_{2-x} Li_{0.5} $M_{0.5}$ O₄ matrix deriving from the K₂NiF₄ structure has an elongated MO₆ octahedron; it has been used to stabilize anisotropic electronic configurations such as high-spin Fe⁴⁺, low-spin Co⁴⁺, medium-spin Co³⁺, low-spin Ni³⁺, or low-spin Cu³⁺. The choice of ions to be stabilized was based on a simple model for predicting the electronic configuration of a d^n ion in a tetragonally distorted octahedral environment. © 1984 Academic Press. Inc. #### Introduction Recently we have proposed a simple model for predicting the electronic configuration of a d^n ion in a tetragonally distorted octahedral environment (1). This model is based on the Tanabe-Sugano diagrams, which give the relative energy vs Dq/B of the different spectroscopic terms corresponding to an electronic population d^n in an O_h symmetry. In the case of lower symmetry, e.g., D_{4h} , a derived diagram giving the stability domains of the different electronic configurations can be drawn. It is based on the criteria: (a) the energy of the different terms varies linearly with Dq (i.e., mixing of the different terms is neglected); (b) the crystal field parameter Dq is directly proportional to $(d_{c-a})^{-5}$, d_{c-a} being the cat- The corresponding θ , \overline{Dq}/B diagrams for the d^4 , d^5 , d^6 , d^7 , and d^8 ions when $\theta > 1$ (elongation) are given in Fig. 1. An elongation of the MO_6 coordination octahedron can induce such specific 3d configurations as high-spin Fe^{4+} ($t_{2g}^3d_z^12$) (${}^5A_{1g}$), low-spin Co^{4+} ($d_{yz}^2d_{zx}^2d_{xy}^1$)(${}^2B_{2g}$), Co^{3+} with an intermediate electronic configuration ($d_{yz}^2d_{zx}^2d_{xy}^1d_{z^2}^1d_{x^2-y^2}^0$)(${}^3B_{2g}$), low-spin $Ni^{3+}(t_{2g}^6d_z^12)({}^2A_{1g})$, or low-spin $Cu^{3+}(t_{2g}^6d_z^22d_{x^2-y^2}^0)({}^1A_{1g})$. The energy gain in \overline{Dq}/B) units $$\eta(\theta) = (E/B(\theta) - E/B(1))/(\overline{Dq}/B)$$ resulting from the stabilizing effect of such an elongation appears in Fig. 2. ion-anion distance; (c) the average value of d_{c-a} , e.g., $\overline{d}_{c-a} = \binom{2}{3}d_{c-a(xy)} + \binom{1}{3}d_{c-a(z)}$ is constant; (d) \overline{Dq} is equal to $\binom{2}{3}$ $Dq_{xy} + \binom{1}{3}Dq_z$; (e) spin-orbit coupling is neglected; (f) the distortion parameter θ of the MO_6 octahedron is defined as $\theta = d_{M-O(z)}/d_{M-O(xy)}$. ^{*} Dedicated to Dr. M. J. Sienko. Fig. 1. θ , \overline{Dq}/B diagrams for d^4 , d^5 , d^6 , d^7 , and d^8 cations in a tetragonally distorted octahedral environment. To check such a model, oxides are required whose structure and composition may favor an elongation of the MO₆ octahedron. In principle, a distortion of the MO_6 octahedron along one of its axes (0z) is possible in an oxide with a layer structure. We have therefore chosen oxides of K_2NiF_4 -type structure in which perovskite layers alternate with rocksalt ones (2). An elongation of the MO_6 octahedra can be produced in the lattice by increasing the covalency of FIG. 2. The energy gain η in \overline{Dq}/B units vs elongation θ for high-spin $d^4(^5A_{1g})$, low-spin $d^5(^2B_{2g})$, medium spin $d^6(^3B_{2g})$, low-spin $d^7(^2A_{1g})$, and low-spin $d^8(^1A_{1g})$. the M-O bonds in the xy perovskite planes. The M-O-M angle between adjacent MO_6 octahedra is 180° so that the same 2p orbital of oxygen is shared between two neighboring M-O bonds. Any weakening of a M-O bond increases the covalency of the com- peting M-O bond. Thus four weak Li-O bonds in the xy perovskite planes will increase the elongation along the θz axis (Fig. 3). This in turn leads to $A'_xA_{2-x}\text{Li}_{0.5}M_{0.5}\text{O}_4$ as the suitable stoichiometry. In this paper we describe the preparation Fig. 3. (a) The K₂NiF₄-type structure. (b) The elongation of the MO₆ octahedra induced by the square-planar environment constituted by four Li-O bonds. of $A_{0.5}La_{1.5}Li_{0.5}Fe_{0.5}O_4$ (A = Ca, Sr, Ba), $Sr_{0.5}La_{1.5}Li_{0.5}Co_{0.5}O_4$, $La_2Li_{0.5}Co_{0.5}O_4$, La_2 $Li_{0.5}Ni_{0.5}O_4$, and $La_2Li_{0.5}Cu_{0.5}O_4$, and the physical characterization of the electronic configuration of the transition-metal ions (Fe⁴⁺, Co⁴⁺, Co³⁺, Ni³⁺, Cu³⁺). The oxidation states of the 3*d* elements have been checked by dissolving the oxides in an acidifed KI solution and redox titration. X-Ray powder diffraction confirmed the tetragonal K₂NiF₄-type structure (Table I). However, the weak additional reflections TABLE I PARAMETERS OF THE TETRAGONAL K_2NiF_4 -Type Cell for the $(A_x'A_{2-x}Li_{0.5}M_{0.5}O_4$ Phases | Phases | а ₀
(Å) | (Å) | c_0/a_0 | |--|-----------------------|----------|-----------| | Ca _{0.5} La _{1.5} Li _{0.5} Fe _{0.5} O ₄ | 3.73 | 12.84 | 3.44 | | $Sr_{0.5}La_{1.5}Li_{0.5}Fe_{0.5}O_4$ | 3.76 | 13.03 | 3.46 | | Ba _{0.5} La _{1.5} Li _{0.5} Fe _{0.5} O ₄ | 3.78 | 13.14 | 3.47 | | Sr _{0.5} La _{1.5} Li _{0.5} Co _{0.5} O ₄ | 3.76(2) | 12.66 | 3.36 | | La ₂ Li _{0.5} Co _{0.5} O ₄ | 3.78(4) | 12.62(4) | 3.3 | | LazLiosNiosO4 | 3.75(6) | 12.87 | 3.43 | | La ₂ Li _{0.5} Cu _{0.5} O ₄ | 3.73 | 13.20 | 3.54 | present in the Guinier photographs of most of the phases point to a larger unit-cell ($a = a_0 \text{ (K}_2\text{NiF}_4) \sqrt{2}, c = c_0 \text{ (K}_2\text{NiF}_4)$); consequently they suggest 1-1 M/Li ordering in the perovskite planes. The existence of two-dimensional Li⁺/Co³⁺ ordering has been supported by a recent electron-diffraction study of La₂Li_{0.5}Co_{0.5}O₄ (3). ### A. Stabilization of High-Spin Fe⁴⁺ in $A_{0.5}La_{1.5}Li_{0.5}Fe_{0.5}O_4$ (A = Ca, Sr, Ba) The axial ratio $c_0/a_0 \simeq 3.46$ suggests a Jahn-Teller configuration $t_{2g}^3 d_z^{1/2}$. The three oxides are antiferromagnetic at low temperature, with T_N between 28 and 35 K (Fig. 4). The experimental value of the Curie constant $(C \simeq 3 \pm 0.05)$ in the paramagnetic region agrees well with the theoretical value (C = 3) for four unpaired electrons with a spin-only contribution and confirms the high-spin state for Fe⁴⁺ $(t_{2g}^3 e_g^1)$ (ground term ${}^5A_{1e}$) (Table II) (4). Mössbauer resonance spectra of powder samples at room temperature and in the 4.2-35 K range are shown in Fig. 5. The isomer shift at 292 K ($\delta = -0.19$ mm · Fig. 4. Reciprocal molar susceptibility vs temperature for $M_{0.5}$ La_{1.5}Li_{0.5}Fe_{0.5}O₄ phases (M = Ca, Sr, Ba). sec⁻¹) is smaller than that observed for Fe²⁺ ($\delta \simeq +1.2 \text{ mm} \cdot \text{sec}^{-1}$) or Fe³⁺ ($\delta \simeq +0.35 \text{ mm} \cdot \text{sec}^{-1}$) with an oxygen 6-coordination. This discrepancy is consistent with a reduced d-electron screening effect and thus with the Fe⁴⁺ oxidation state. The high-spin FIG. 5. Mössbauer spectra of Sr_{0.5}La_{1.5}Li_{0.5}Fe_{0.5}O₄. FIG. 6. The two environments of high-spin Fe⁴⁺ in $M_{0.5}\text{La}_{1.5}\text{Li}_{0.5}\text{Fe}_{0.5}\text{O}_4$ phases according to stacking faults along the c axis. state is confirmed by the difference between the values observed for $A_{0.5}La_{1.5}Li_{0.5}$ $Fe_{0.5}O_4$ ($\delta \simeq -0.19~\text{mm} \cdot \text{sec}^{-1}$) and that for $SrFeO_3$ ($\delta \simeq 0.0~\text{mm} \cdot \text{sec}^{-1}$) where the Fe^{4+} configuration has itinerant σ -bonding electrons and may be low spin (5, 6). The large quadrupole splitting ($\Delta \approx 1.10$ mm · sec⁻¹) may be explained by the large elongation of the FeO₆ octahedron (i.e., $c_0/a_0 = 3.46$). A better fit to the observed spectrum is obtained by assuming two types of TABLE II ELECTRONIC CONFIGURATIONS CORRESPONDING TO THE TERMS IN A D_{4h} Symmetry | Oh | D_{4h} | Electronic configuration | |-----------------|---|---| | 5E ₈ | y 5B _{1g}
> 5A _{1g} | $d_{zx}^{1}d_{yz}^{1}d_{xy}^{1}d_{z}^{0}2d_{x}^{1}2_{-y^{2}} \\ d_{zx}^{1}d_{yz}^{1}d_{xy}^{1}d_{z}^{1}2d_{x}^{0}2_{-y^{2}}$ | | $^3T_{1g}$ | A_{2g} A_{2g} A_{3} | $d_{zx}^{1}d_{yz}^{1}d_{xy}^{2}d_{z}^{1}2d_{x}^{0}$ $(d_{zx}d_{yz})^{3}d_{xy}^{1}d_{z}^{0}2d_{x}^{0}$ $(2x^{2}d_{yz})^{3}d_{xy}^{1}d_{z}^{0}2d_{x}^{0}$ | Fe⁴⁺ sites with slightly different hyperfine parameters (Table III) (7). This assumption could be justified by the presence of stacking faults along the Oz axis and hence the existence of two types of Fe⁴⁺ environments (Fig. 6). This has been confirmed by a neutron-diffraction study of Sr_{0.5}La_{1.5}Li_{0.5} Fe_{0.5}O₄ (8) giving $d(\text{Fe-O})_{Oz}/d(\text{Fe-O})_{xy} \approx 1.25$ and $\mu_{\text{Fe}} = 3.5 \mu_{\text{B}}$ (9). # B. Stabilization of Low-Spin Co⁴⁺ in Sr_{0.5}La_{1.5}Li_{0.5}Co_{0.5}O₄ The room-temperature ratio c/a = 3.36 is intermediate between that generally observed for an anisotropic electronic configuration, 3.25-3.30 and that characterizing a Jahn-Teller distortion, 3.45. This suggests an anisotropic distribution in the t_{2g} orbitals, $d_{zz}^2 d_{zx}^2 d_{xy}^1$ and low-spin Co^{4+} . The magnetic behavior follows a Curie-Weiss law between 50 and 200 K (Fig. 7); TABLE~III Mössbauer Parameters of the Spectra of Fe(IV) in $Sr_{0.5}La_{1.5}Li_{0.5}Fe_{0.5}O_4$ | T | | Site 1 | | | Site 2 | | |-----|--|----------------------------------|-------------------|--|----------------------------------|----------------------| | (K) | $\delta_{\alpha Fe} \ (mm \ sec^{-1})$ | Δ (mm sec ⁻¹) | $H_{\rm hf}$ (kG) | $\delta_{\alpha Fe}$ (mm sec ⁻¹) | Δ (mm sec ⁻¹) | H _{hf} (kG) | | 4.2 | -0.10 | 0.99 | 153 | -0.06 | 1.31 | 131 | | 35 | -0.10 | 0.99 | | -0.11 | 1.28 | | | 292 | -0.18 | 0.99 | | -0.19 | 1.28 | | Fig. 7. Reciprocal molar susceptibility vs temperature for Sr_{0.5}La_{1.5}Li_{0.5}Co_{0.5}O₄. the experimental Curie constant (C=0.40) (5)) is close to the theoretical value for one unpaired electron (C=0.375). This result is accounted for by the axial field component resulting from the elongation of the CoO₆ octahedra along the θ_z axis. Such a distortion lifts the orbital degeneracy of the $^2T_{2g}$ term to give, in a D_{4h} symmetry, an orbital singlet $^2B_{2g}$ as ground term (Table IV) and tends to decrease the temperature dependence of the magnetic moment toward spinonly value. An interpretation of the magnetic behavior of $Sr_{0.5}La_{1.5}Li_{0.5}Co_{0.5}O_4$, which takes into account a modified Kotani's Hamiltonian resulting from the anisotropic field and the bidimensional character of this structure, leads to a calculated value of the exchange integral (J/k_B) close to -12.5 K. Owing to the expected high covalency of TABLE IV ELECTRONIC CONFIGURATIONS CORRESPONDING TO THE TERMS IN D_{4h} Symmetry for a d^5 Cation | Oh | D_{4h} | Electronic configurations | |--------------------------|---|---| | $^{6}A_{1g} \rightarrow$ | ► ⁶ A _{1g} | $d_{xx}^{1}d_{yx}^{1}d_{xy}^{1}d_{x}^{1}d_{x}^{1}2d_{x}^{1}2_{-y^{2}} \\ d_{zx}^{1}d_{yz}^{1}d_{xy}^{2}d_{x}^{1}2d_{x}^{0}2_{-y^{2}}$ | | $^4T_{1g}$ | | $(d_{zx}d_{yz})^3d_{xy}^1d_{z}^12d_{x^2-y^2}^0$ | | $^{2}T_{2g}$ | ${}^{2}E_{g}$ ${}^{\wedge}$ ${}^{\wedge}$ | $(d_{xx}d_{yz})^3 d_{xy}^2 d_{z2}^0 d_{x2-y2}^0 d_{zx}^2 d_{yz}^2 d_{xy}^1 d_{x2}^0 d_{x2-y2}^0$ | TABLE V ELECTRONIC CONFIGURATIONS CORRESPONDING TO THE TERMS IN D_{4h} Symmetry for a d^8 Cation | Oh | D_{4h} | Electronic configurations | |--------------|-------------------|---| | A_{1g} | $-1A_{1g}$ | $(d_{xz}^2 d_{xy}^2 d_{yz}^2 d_{z}^2 d_{z^2-y^2}^0)$ or $(e_g^4 b_{2g}^2 a_{1g}^0 b_{1g}^0)$ | | $^{5}T_{2g}$ | $\sim {}^5B_{2g}$ | $(d_{xz}^{\dagger}d_{yz}^{\dagger}d_{xy}^{\dagger}d_{xy}^{\dagger}d_{x^{2}-y^{2}}^{\dagger}) \text{ or } (e_{z}^{g}b_{2g}^{2}a_{1g}^{\dagger}b_{1g}^{\dagger})$ | | | | | | $^{3}T_{2g}$ | $-{}^{3}B_{2g}$ | $(d_{xz}^{2}d_{yz}^{1}d_{xy}^{1}d_{z^{2}}^{1}d_{x^{2}-y^{2}}^{0}) \text{ or } (e_{g}^{4}b_{2g}^{1}a_{1g}^{1}b_{0g}^{0})$ | the Co⁴⁺-O bond, this small value can be explained by the observed Li⁺/Co⁴⁺ 1-1 ordering, which leads to weak magnetic superexchange interactions between Co⁴⁺ ions (10). An ESR investigation at 4.2 K confirms the anisotropic electronic configuration of Co^{4+} (2.32 < g_{\perp} < 2.55, g_{\parallel} < 0.85). The calculated value of the k factor (k=0.65) which is much smaller than that observed in Al_2O_3 : Co^{4+} (0.94 < k < 1.00), can be explained by the enhancement of the covalency of the Co^{4+} -O bond arising from the square-planar surrounding formed by the four weak competing Li-O bonds. # C. Stabilization of a Medium Electronic Configuration of Co³⁺ In an oxygen lattice of O_h symmetry the crystal-field splitting of Co^{3+} is close to the exchange energy. Such a competition favors the low-spin state $(t_{2g}^6 e_g^0)$ at low temperature and a low-spin $({}^1A_{1g}, S = 0) \rightarrow high-spin ({}^5T_{2g}, S = 2)$ transition at higher temperature (11-15). For O_h symmetry the energy of the cubic field term vs Dq/B is given by the Tanabe–Sugano diagram (16). For a D_{4h} elongation splitting of the high-energy ${}^3T_{2g}$ term (S=1), (Table V) can lead to the stabilized ${}^3B_{2g}$ term having an energy close to that of the ${}^1A_{1g}$ term, or even becoming the ground term (Fig. 8). In SrLaCoO₄ with K₂NiF₄-type structure, the structural distortion is too small FIG. 8. Evolution of the relative stability of the terms vs distortion. $(c_0/a_0 = 3.29, \theta = 1.07)$ to stabilize such an intermediate configuration (15). However, the La₂Li_{0.5}Co_{0.5}O₄ phase, where the weak Li-O bonds increase the covalency of the Co-O bonds in the perovskite planes, might be able to induce a sufficient elongation of the CoO6 octahedra. The observed c_0/a_0 ratio at room temperature, which is close to 3.33, does not permit to conclude in favor of an anisotropic, medium-spin configuration $(d_{yz}^2 d_{zx}^2 d_{xy}^1 d_{z}^{1} d_{xy}^{0} d_{z}^{2} d_{xy}^{0})$ for some Co^{3+} ions, although the increase of the c_0/a_0 ratio-vs-temperature curve suggests such an intermediate-spin state may contribute to the spin transition. The magnetic curve $\chi_M^{-1} = f(T)$ indicates the onset of a spin transition at 200 K (17). At low temperature Co³⁺ is in a diamagnetic low-spin state; a small amount of paramagnetic Co³⁺ or of impurities causes the experimental curve to shift toward lower χ_M^{-1} values below room temperature (Fig. 9). The observed χ_M value can be represented by $$\chi_M = A + B + C + Y(T)/2T$$ where A stands for the diamagnetic contribution $\chi_{\rm dia.}$ of all present ions, B is the Van Vleck paramagnetism $N\alpha$, which for ${}^{1}A_{1g}$ assumes the value $8N\beta^{2}/10Dq$. C is a small contribution due to magnetic Co³⁺ or mag- netic impurities. Y corresponds to the Boltzmann distribution between the ground term ${}^{1}A_{1g}$ and the term involved in the spin transition. A low-spin $({}^{1}A_{1g})$ to a medium-spin $({}^{3}B_{2g})$ transition, with a splitting Δ_{1} , does not yield a good fit to the experimental magnetic curve. However, a good agreement is obtained when a second low-spin \rightarrow high-spin transition $({}^{1}A_{1g} \rightarrow {}^{5}E_{g})$, with a splitting Δ_{2} is added using $\Delta_{1} = 1600$ cm⁻¹ and $\Delta_{2} = 1650$ cm⁻¹. To improve the D_{4h} elongation of the CoO₆ octahedra, a small amount (x = 0.1) of Cu³⁺ (low-spin d^8) in La₂Li_{0.5}Cu_{0.5}O₄ (c/a = 3.54) was replaced by Co³⁺ (18). Using the above model to fit the magnetic curve resulted in a much smaller ${}^1A_{1g} \rightarrow {}^3B_{2g}$ splitting with $\Delta_1 = 500$ cm⁻¹ (Fig. 10). It appears that it should be possible to stabilize the medium-spin state of Co³⁺, with ${}^3B_{2g}$ as ground term from the room temperature in a square-planar environment. # D. Stabilization of Low-Spin Ni³⁺ in La₂Li_{0.5}Ni_{0.5}O₄ Due to its high crystal-field stabilization energy, Ni³⁺ in an oxygen lattice is in a low- Fig. 9. Comparison of experimental and theoretical values of $\chi_M = f(T)$ for La₂Li_{0.5}Co_{0.5}O₄. Fig. 10. Comparison of experimental and theoretical values of $\chi_M = f(T)$ for La₂Li_{0.5}Cu_{0.4}Co_{0.1}O₄. spin state, $t_{2g}^6 d_z^{12}$. This is, for example, the situation in the $LnNiO_3$ perovskites (19) or in the $SrLnNiO_4$ phases with K_2NiF_4 -type structure (20), but the high covalency of the Ni^{3+} -O bond leads to some electronic delocalization and may induce some metallic behavior. However, the two-dimensional 1-1 Li⁺-Ni³⁺ ordering in the perovskite layers of La₂Li_{0.5}Ni_{0.5}O₄ makes possible the characterization of the "localized" lowspin state (21). The observed c/a ratio, which is close to Fig. 11. (1) Reciprocal molar susceptibility vs temperature for La₂Li_{0.5}Ni_{0.5}O₄. (2) Energy diagram of Ni³⁺ d orbitals. (3) Splitting of the ground term of Ni³⁺ in a D_{4h} symmetry. Fig. 12. ESR spectrum of $La_2Li_{0.5}Ni_{0.5}O_4$ at room temperature. 3.43, is consistent with the presence of a Jahn-Teller distortion arising from the $t_{2p}^6 d_{22}^1$ configuration. The difference between the Curie constant $C \approx 0.466 \pm 0.010$ determined from the magnetic curve, and the theoretical value of 0.375 for Ni³⁺ is attributable to the D_{4h} symmetry of the Ni³⁺ site which induces anisotropy in the molar magnetic susceptibility (Fig. 11). The ESR spectrum at 300 K (Fig. 12) is consistent with an anisotropic electronic configuration: $g_{\parallel}=2.040,\ g_{\perp}=2.278.$ It agrees well with the structural elongation and with the anisotropy of the susceptibility $(g_{\perp}>g_{\parallel})$. A recent ESR study (3) of lowspin Ni³⁺ in an oxide of K₂NiF₄ type, SrLaAl_{1-x}Ni_xO₄, gave $g_{\perp}=2.18$ and $g_{\parallel}=2.01$ for x=0.25. The increased elongation along the θ_Z axis of the NiO₆ octahedra, induced by the weak competing Li-O bonds, may be responsible for the larger difference between g_{\perp} and g_{\parallel} in La₂Li_{0.5} Ni_{0.05}O₄. # E. The d⁸ Low-Spin State of Cu³⁺ in La₂Li_{0.5}Cu_{0.5}O₄ Oxides containing Cu^{3+} occur very seldom. The phases $MCuO_2$ (M = Na, K, Rb, Cs) and Na_3CuO_3 have been described earlier (22–25). More recently the rhombohedral perovskite LaCuO₃ has been synthesized under a high oxygen pressure (26). It is likely that Cu^{3+} in this compound is stabilized by electron delocalization, character- ized by narrow-band Pauli paramagnetism (27). Cu³⁺ in a low-spin state d^8 has now been stabilized in the La₂Li_{0.5}Cu_{0.5}O₄ phase as the result of the induced elongation of the CuO₆ octahedron. The c/a ratio (3.54) is the highest so far observed for a K₂NiF₄ structure; it suggests a Jahn-Teller distortion higher than that due to only one unpaired electron in the e_g orbitals; it is consistent with a low-spin d^8 state, $t_{2g}^6 d_{22}^2 d_{x^2-y^2}^{0}$. The diamagnetic behavior confirms this electronic configuration (26). #### Conclusion As shown by the various examples above (high-spin $Fe^{4+}-d^4$, low-spin $Co^{4+}-d^5$, medium-spin $Co^{3+}-d^6$, low-spin $Ni^{3+}-d^7$, low-spin $Cu^{3+}-d^8$), the $A_2Li_{0.5}M_{0.5}O_4$ matrix appears to be particularly suitable for the stabilization of anisotropic electron configurations. The present study is a good illustration of the correlations between structural and chemical-bonding factors of the near-neighbor oxygen environment of a transition element ion determine the electronic configuration adopted. #### Acknowledgments The authors are grateful to Dr. N. Chevreau, Dr. J. F. Colombet, Dr. J. M. Dance, Dr. L. Fournes, Dr. J. L. Marty, Dr. F. Menil, Dr. C. Parent, and Dr. J. L. Soubeyroux for their contributions to these studies. #### References - 1. B. Buffat, G. Demazeau, M. Pouchard, and P. Hagenmuller, *Proc. Indian Acad. Sci.* (Chem. Sci.) 93, 313 (1984). - G. Le Flem, G. Demazeau, and P. Hagenmul-Ler, J. Solid State Chem. 44, 82 (1982). - R. A. Mohan Ram, K. K. Singh, W. H. Madhusudan, P. Ganguly, and C. N. R. Rao, *Mater. Res. Bull.* 18, 703 (1983). - G. DEMAZEAU, M. POUCHARD, N. CHEVREAU, M. THOMAS, F. MENIL, AND P. HAGENMULLER, Mater. Res. Bull. 16, 689 (1981). - P. K. GALLAGHER, J. B. MAC CHESNEY, AND D. N. E. BUCHANAN, J. Chem. Phys. 41(8), 2429 (1964). - H. Oda, Y. Yamaguchi, M. Takei, and H. Watanabe, J. Phys. Colloq. Cl. Suppl. No. 4 38, C1-121 (1977). - M. F. THOMAS, G. DEMAZEAU, M. POUCHARD, AND P. HAGENMULLER, Solid State Commun. 39, 751 (1981). - 8. J. L. SOUBEYROUX, N. CHEVREAU, G. DEMAZEAU, M. POUCHARD, AND P. HAGENMULLER, J. Solid State Chem. 51, 38 (1984). - J. L. Soubeyroux, B. Buffat, N. Chevreau, and G. Demazeau, *Physica B* 120, 227 (1983). - B. BUFFAT, G. DEMAZEAU, M. POUCHARD, J. M. DANCE, AND P. HAGENMULLER, J. Solid State Chem. 50, 33 (1983). - 11. G. BLASSE, J. Appl. Phys. 36, 879 (1965). - P. M. RACCAH AND J. B. GOODENOUGH, Phys. Rev. 155, 932 (1967). - V. G. BHIDE, D. S. RAJORIA, G. RAMA RAO, AND C. N. R. RAO, Phys. Rev. B 6, 1021 (1972). - 14. G. DEMAZEAU, M. POUCHARD, AND P. HAGEN-MULLER, J. Solid State Chem. 9, 202 (1974). - G. Demazeau, Ph. Courbin, G. Le Flem, M. Pouchard, and P. Hagenmuller, Nouv. J. Chim. 3, 171 (1979). - Y. TANABE AND S. SUGANO, J. Phys. Soc. Jpn. 753, 766 (1954). - G. DEMAZEAU, M. POUCHARD, M. THOMAS, J. F. COLOMBET, J. C. GRENIER, L. FOURNES, J. L. SOUBEYROUX, AND P. HAGENMULLER, Mater. Res. Bull. 15, 451 (1980); 16, 353 (1981). - B. BUFFAT, G. DEMAZEAU, M. POUCHARD, AND P. HAGENMULLER, Mater. Res. Bull. 18, 1153 (1983). - G. DEMAZEAU, A. MARBEUF, M. POUCHARD, AND P. HAGENMULLER, J. Solid State Chem. 3, 582 (1971). - G. DEMAZEAU, M. POUCHARD, AND P. HAGEN-MULLER, J. Solid State Chem. 18, 159 (1976). - G. DEMAZEAU, J. L. MARTY, M. POUCHARD, T. ROJO, J. M. DANCE, AND P. HAGENMULLER, Mater. Res. Bull. 16, 47 (1981). - W. KLEMM, G. WEHRMEYER, AND H. BADE, Z. Elecktrochem. Ber. Bunsenges. Phys. Chem. 63, 56 (1959). - K. HESTERMANN AND R. HOPPE, Z. Anorg. Allg. Chem. 367, 261 (1969). - K. HESTERMANN AND R. HOPPE, Z. Anorg. Allg. Chem. 367, 249 (1969). - K. HESTERMANN AND R. HOPPE, Z. Anorg. Allg. Chem. 367, 270 (1969). - G. Demazeau, C. Parent, M. Pouchard, and P. Hagenmuller, *Mater. Res. Bull.* 7, 913 (1972). - J. B. Goodenough, N. F. Mott, M. Pouchard, G. Demazeau, and P. Hagenmuller, Mater. Res. Bull. 8, 647 (1973).